312.630.4000   |   contact@nolan-law.com


Nolan Law News Articles

Passengers Frightened; Safety Board Not Interested

About 25 minutes into JetBlue Flight 1416 from Long Beach, CA, to Austin, TX, the underwing engine on the right side of the Airbus A320 began to overheat. Within moments of the September 19 event, the crew decided to activate the fire extinguishing bottles mounted on the engine and banked for an immediate return to Long Beach.

Afterward, passenger Michelle Settergren shared her experience with the Long Beach Post newspaper:

“I had a window seat, so I was looking out the window. We were flying over downtown and then all of a sudden I started to smell something rank, just awful. The plane started to fill with smoke. Before you knew it, it was just gray and you couldn’t see anything. People were screaming and panicking. All of a sudden you just hear this ‘whoosh’ sound and whatever [jet] motor was running just stopped. I thought, hands down, I was going to die. The pilot got on the intercom and said we had engine failure and we were headed back to Long Beach. That’s it. There was no reassurance that we would be okay. The plane had a lot of turbulence, and people were praying, crying and screaming.”

Passenger Dean Delbaugh recalled, “The fumes were ridiculous. I can still kind of taste them in my mouth.”

Passenger Cynthia Manley said the engine failure was accompanied by a loud ‘boom’ and almost immediately smoke began filling the cabin. The smoke was thick and acidic. “I was breathing through my pillow,” she recounted.

The scene in the cabin of JetBlue Flight 1460

The scene in the cabin of JetBlue Flight 1460

Actor Jackson Rathbone, travelling with his wife and infant son, said, “The oxygen masks did not deploy, but the brave stewardesses came around and manually deployed them.”

The flight attendants had the presence of mind to don portable emergency oxygen masks before working their way down the aisle to manually deploy the “little yellow cups” for the passengers from the overhead service compartments.

The airplane was rocking, Rathbone said, and before touchdown the order came over the public address system to “Brace!” This order was repeated by the flight attendants.

After the airplane came to a halt, the exits were thrown open, and the 147 occupants jumped down the slides.

A few passengers were treated for bumps and bruises. All were bussed to a room at the Long Beach airport where they filled out forms. They were given freebie snacks. Rathbone described the gesture as ” ‘Sorry the engine blew up in mid-flight’ bag of chips.”

While there were no serious injuries, questions abound:

Had the engine demonstrated temperature fluctuations in earlier flights? That day? That week?

What did the engine monitoring system record? Were temperature anomalies being watched by JetBlue maintenance personnel? If so, were they just noting the deviations, or had they already decided to conduct a detailed maintenance inspection of the engine?

If JetBlue maintenance was in the dark about the impending engine failure, what good are state-of-the-art engine health and monitoring programs?

Was the engine shut down before the fire extinguishers were activated? Cabin air is provided by “bleed” air from the engine compressor. Most compressed air is sent straight to the “hot” section of the engine to be mixed with fuel and produce thrust, but some air is diverted before the “hot” section to provide cabin air. Was the foul odor smelled by passengers the telltale of an engine fire, or was part or all of the smell resulting from the fire extinguishing agent?

If the engine was shut down, how did contaminated bleed air get into the cabin? Is it because the engine is still free-wheeling even when shut off?

Most interesting of all, why did some or all of the passengers emergency oxygen masks fail to deploy, requiring flight attendants to work their way down the smoke-filled aisle to manually deploy them? These masks are normally deployed by an electrical switch in the cockpit. Had this switch been activated? If not, was there a breakdown of communication in the cockpit? If the switch had been triggered but the masks still didn’t deploy, this fact would point to an electrical failure. Is the electricity for mask deployment provided solely by the affected engine? If so, where is electrical redundancy.

Lots of issues. No answers likely to come from either JetBlue or Airbus. The National Transportation Safety Board should investigate. The Board is not doing so.

An opportunity to learn, and correct deficiencies, is being lost.

Inscrutable Technology

Cockpit automation is a source of suspicion, even mistrust, among many pilots. Cockpit systems tend to be overly complicated and their functioning inscrutable. A technical memorandum on “Cognitive Engineering … of the Vertical Navigation (VNAV) Function”, a central component of the drive toward increasing automation, by a team of researchers found:

“The typical VNAV function automatically chooses the active altitude target from a possible list of sixteen, and chooses the active speed target from a possible list of twenty-six … [and] Pilots are ‘surprised’ by the behavior of the VNAV function when the aircraft trajectory or the thrust indicators do not match their expectations.”

The researchers concluded: “VNAV function behavior is not intuitive in the descent and approach phase of the flight plan.”

This problem was amply demonstrated in the July 2013 crash of Asiana Airlines Flight 214 at San Francisco. The National Transportation Safety Board (NTSB) concluded, “The crew over-relied on automated systems without fully understanding how they interacted.”

Thousands of hours of flying experience, hundreds of hours in classrooms and simulators, yet the crew was unaware that the engines were in idle thrust during the critical landing phase. Automation did not help to prevent this accident — rather, it contributed to the catastrophe.

During the course of its exhaustive investigation into the crash, then-NTSB Chairman Deborah Hersman observed that “mode confusion or mode awareness is an issue … Because it’s not just in this accident … It’s over and over again.”

She asked Stephen Boyd, of the FAA’s transport aircraft directorate, a basic question, “What’s the purpose of automation?”

Boyd: “Are you asking from a regulatory perspective?”

Hersman: “I’m asking for a one-sentence answer.”

Boyd: “Madam Chairman, it’s very difficult to answer because there is such a wide range of what automation means … it’s hard to say what the purpose is, and I would have to say it depends on what you’re automating.”

Hersman: “Okay. So what’s the purpose of autothrottles? Is it to reduce workload? Is it to increase safety? I mean, I’m just looking for a really big picture understanding of why you would implement that rather than manually fly all the time, be responsible for throttles all the time?”

Boyd: “Well, I would say that’s fundamentally a question for the designers to answer.”

Captain John Cashman, formerly Boeing’s chief pilot for the B777 program, did little better, saying the customer wanted automation to “improve the efficiency of aircraft.”

Unsaid in these unsatisfying exchanges is that automation has been increased because of the gains in calculating capability and the reduced size and power demands of computers. Automation has increased because the technology enabled it.


Cockpit automation has increased because technology enabled it, not because it met the pilots' needs

Cockpit automation has increased because technology enabled it,
not because it met the pilots’ needs

Hersman never did get an answer to her basic question.

Let us try a basic definition:

“Automation is applied to relieve the pilots’ routine workload while increasing their control of the airplane and their awareness of the airplane’s safe and unsafe location and path in three-dimensional airspace; automation calls to the crew’s attention any deviation from normal operating parameters with plain and compelling language, all while facilitating the pilots’ ‘heads-up’ view out the windscreen.”

Or, the short version:

“To increase pilots’ control of the aircraft and their awareness of systems functioning.”

In other words, attending to the task of entering values on a key pad, to the detriment of looking through the windscreen, would be a negative according to this definition. So would engines at idle thrust in the moments before touchdown during landing. So would attempted takeoff without deployment of trailing edge flaps. So would all fuel dribbling out through a leaky pipeline, leading to an unusually low fuel state too soon in the flight. There is a long list of problems where existing automation has failed — either designers did not account for a seemingly improbable failure (technological hubris), or explicit alerts to the crew were not provided (design complacency).

Under the definition above, sixteen altitude targets, twenty-six speed targets, and the computer selecting between this array — to the frequent mystification of pilots — would be impermissible. The automatic selection of target altitudes and speed is not in accordance with strengthening the crew’s control of the airplane.

Increasing the automation because it was possible to do so has only served to increase pilot surprise. According to the technical memorandum referred to at the outset of this discussion, more than half of the pilots surveyed reported being surprised by VNAV behavior (e.g., unexplained altitude errors, unpredictable speed targets during approach). One group of pilots reported the VNAV function as “the most disliked feature of automated cockpit systems.”

Hersman asked the salient question — one that neither the FAA nor designers of modern jetliners have asked themselves. Yet inscrutable technology, its secrets buried in lines of computer code, is piled on top of existing protocols that are, at best, only partially understood by pilots.

“A Cognitive Engineering Analysis of the Vertical Naviation (VNAV) Function” by Lance Sherry et. al., National Aeronautics and Space Administration, Ames Research Center, TM-2001-210915

A Programmed ‘Pilot Trap’

Landing a modern jetliner requires the full attention and coordination of the pilots. The speed of cruise flight — approximately 550 miles per hour — must be bled off for landing. The airplane must be guided down an invisible glide slope so the tires skim the end of the runway. While descending, the airplane must be configured for landing; trailing edge flaps and leading edge slats deployed, engine power throttled back for a stable descent, communications must be maintained with the airport tower and with the flight attendants in the cabin, and a lookout must be maintained for other aircraft in the vicinity.

While the pilot handling the flight controls is seeking to maintain the airplane on the descending glide path, any automation that maintains the airplane’s reduced speed certainly frees his mind for the task of keeping the airplane along the -3° path to the runway.

If the pilot mistakenly believes the automated system is maintaining the correct speed for descent, when it is not, the lack of thrust can mean premature contact with the ground — and usually disaster.

The subtle failure of speed protection during descent is a classic “pilot trap”, one that caught the captain of Asiana Airlines Flight 214 on July 6, 2013. During a daylight landing in clear weather at San Francisco, with 291 passengers aboard the B777, the airplane lost speed, struck the seawall at the end of runway 28L, and cart wheeled to a spot about 2,000 feet further down, completing a 330° turn before skidding to a stop. Three passengers died and 199 were transported to hospitals with injuries.

The airplane was destroyed, broken apart and charred in a goo of firefighting foam.

The wreckage of Asiana Flight 214

The wreckage of Asiana Flight 214

A fiery, deadly fiasco resulting from decreasing airspeed that was not sensed by any of the supposedly professional pilots in the cockpit (three captains and one first officer, some training and evaluation being conducted on the flight from South Korea).

The National Transportation Safety Board (NTSB) investigated. A year after the crash, acting NTSB Chairman Christopher Hart glumly observed, “In this accident, the flight crew over-relied on automated systems without fully understanding how they interacted.”

Whether the automatic speed control was “On” or “Off” was not clear to the crew. The handling pilot presumably thought it was “On” when in fact the equivalent of speed control in an automobile had quietly, without announcing this fact, snapped “Off”.

The NTSB recommended that the Federal Aviation Administration (FAA) review the design of the speed protection systems on the B777:

“Convene a special certification design review of how the Boeing 777 automatic flight control system controls airspeed and use the results of that evaluation to develop guidance that will help manufacturers to improve the intuitiveness of existing and future interfaces between flight crews and autoflight systems.”

Classic toothless bureaucratese. Preferable wording might be:

“Redesign B777 and all other aircraft model autoflight systems to ensure that their controls of airspeed and altitude are obvious and that their ‘On’ and ‘Off’ status is unambiguous to the crew, and that changes in status are both aurally and visually apparent in the cockpit such that acknowledgement or rejection is required by crew action. Require all autoflight systems not meeting this standard to be upgraded in aircraft within 24 months of this recommendation, with associated documentation and recommended flight training to be issued to the airlines. Ensure FAA approval of all such changes and issue of FAA-compliance directives to ensure mandatory implementation by airplane manufacturers and the airlines.”

Let us not be wishy-washy about the flight crew’s real-time knowledge about whether speed is automatically being maintained, or not.

The problem predates the Asiana crash at San Francisco. At least one other crash and one incident involving other Boeing aircraft models can be attributed to mode confusion — or ignorance — according to the NTSB.

Captain Kim Je Youl, a B777 instructor pilot at Asiana Airlines, remarked in an interview with NTSB investigators that if the Flight Level Change (“FLCH”) mode is selected during descent, the autothrottle will move to the HOLD mode, which does not support airspeed protection. Rather, the engines will spool down to idle power. From an English translation of his statement:

“During an approach to Seattle … the airspeed was falling close to the target airspeed but the autothrottle was in an idle state and did not respond … when the airspeed was 10 knots below the target airspeed, I turned off the autothrottle and manually pushed the throttle and had an uneventful landing. However, I was surprised that the autothrottle did not maintain the selected target airspeed.

“After the flight, I examined the ‘Flight Control’ section of the Boeing Flight Crew Operations Manual (‘FCOM’) and was eventually able to find, with some difficulty, a single sentence ‘note’ item on circumstances in which the autothrottle may not respond. I still felt this ‘note’ was insufficient to explain what I had just experienced. Therefore, I did a further study of the ‘Autopilot’ section of the Boeing FCOM and realized that in the circumstances I described above the autothrottle can be in a dormant state and the autothrottle will not function even if the target airspeed is reached. In my personal opinion, this is very important information that should be highlighted to pilots as a ‘warning’ item and not merely a ‘note’ item in the Boeing FCOM.

“In light of my personal experience, I made it a point to teach this aspect of the Boeing 777’s authrottle logic in ground school.”

No aural alarm. Just a green “Hold” light on the instrument panel (not yellow or red) — green signifying everything is normal. The term “Hold” is a misnomer; not holding thrust to maintain the target airspeed, but holding at idle power. Unless this condition is caught, the airplane will descent below the glidepath.

Captain Jung Tai Soo, a B777 pilot for Asiana, recalled his ground school session:

“I attended [a] course on ‘Performance’ that was taught by Captain Kwon Young Sik, a Boeing 777 captain and flight instructor at Asiana. Captain Kwon stressed that during approach … he strongly cautioned against using FLCH in a situation where a fast descent was required, using the visual approach to runway 28L at [San Francisco] as an example.”

One would think that for an airplane in flight, any automatic command to reduce thrust to idle power would be signified by a yellow light on the instrument panel illuminating the word ‘IDLE’.

Note the illuminated green letters, with HOLD supposed to indicate idle power; for the unwary, a 'pilot trap' of the first order

Note the illuminated green letters, with HOLD supposed to indicate idle power;
for the unwary, a ‘pilot trap’ of the first order

A pilot who does not remember his ground school instruction, or who is otherwise distracted or busy during the descent to the runway, might not recognize that the airplane’s computer has reduced the two engines’ power to idle. Basically, nil power when more power is needed.

This deadly quirk was discussed at a December 2013 NTSB hearing on the Asiana crash. Indeed, mode confusion, the design of the authrottle system, and how the crew is supposed to know “HOLD” means idle power consumed a good portion of the discussion between the five Presidentially-appointed board members, FAA, Boeing and Asiana witnesses called to testify.

This particular autothrottle system is found on hundreds of Boeing aircraft; not just on the B777. The same arrangement is a feature of the B747, the B757 and the B767. The exact same autothrottle system is found on Boeing’s brand new B787. In other words, the system is widely used in the existing fleet and will be in use for the nest 50 years as the B787 enters widespread service.

The FAA’s Stephen Boyd testified about the absence of a “wake-up” function on the autothrottle, revealed during the course of certification flight testing, done as part of the process to gain FAA approval of the B787 for use by the airlines:

“We were conducting a flight test and there was a flight level change initiated and [it] was interrupted by another event … Our pilot … was monitoring airspeed and noticed airspeed was decaying, and then as part of his test pilot functions, allowed the airspeed to decay further to see what would happen

“And our test pilot was expecting … the autothrottle would wake up … not realizing that the autothrottle was on, the autothrottle would not wake up.

“In the process of doing the evaluation [of the autothrottle design software], working with Boeing in this one, our FAA pilot determined that the fact that the autothrottle did not wake up was not a safety issue, nor was it a regulatory compliance [issue] …he worked with Boeing to include additional information in the flight manual to explain that the autothrottle on the 787 would not wake up from an autothrottle hold.”

So, buried deep in the B787 flight manual is the same quiet but revealing caveat — “additional information” according to the FAA’s obviously satisfied Boyd — that Captain Kim found hard-to-find and woefully deficient in the B777 manual.

Captain Kim was present at the NTSB hearing, representing Asiana Airlines. He noted that the European Aviation Safety Agency (EASA) wrote during B787 certification that the wake-up function was not operative and did not protect the aircraft.

“EASA noted the inconsistency in automation behavior has been in the past a strong contributor to aviation accidents and concluded that Boeing would enhance the safety of the aircraft by avoiding exceptions in the autothrottle wake-up mode,” he point out.

“Why didn’t Boeing devise its automation design to address this recommendation?” he asked Robert Myers, Boeing’s chief engineer for flight decks.

Myers reply was revealing:

“This EASA recommendation came up during the 787 certification in a similar manner as the FAA response item that we discussed earlier. This [EASA concern] came out as a recommendation, which means that Boeing is not required to respond to it and it is not a certification issue.”

Thus, the FAA determined the autothrottle’s lack of wake-up was not a safety issue, and the European concern about the same issue did not “require” a response. By such careful parsing of words, the very same autothrottle deficiencies contributing to the crash of Asiana Flight 214 were embedded in the new B787.

Board member Robert Sumwalt asked Boeing’s Darren Gulbranson, head of the company’s simulators, “Where does it caution that if you’re in a flight level change mode and the autothrust is in hold, that they (sic) will not wake up as we’ve just described here?”

Gulbranson: “I believe it’s in Chapter 4 of the Flight Crew Operations Manual, a note that says in flight level changes, the mode — that the throttle’s in hold, it will not wake up.”

Sumwalt was not impressed that this key behavior of the system was buried in the fine print. “See? If you know all of those nuances, it’s pretty clear, but here we are training people and we’re instilling in them that the autothrottle is going to wake up.”

Needless to say, the NTSB hearing was a startling revelation that when the authrottle is in HOLD mode it will not wake up and provide speed protection. One is left wondering what other foibles and quirks lurk in the highly automated cockpits of today’s, and tomorrow’s, jets, covered by notes in the manuals but not fixed?

In its listing of safety concerns emanating from the Asiana Flight 214 crash, The NTSB listed “reduced design complexity” to “help reduce the type of error made by the PF [pilot flying].”

The NTSB concluded:

“If the autothrottle engagement function (wake-up), or a system with similar functionality, had been available during the final approach, it likely would have activated and increased power about 20 seconds before impact, which may have prevented the accident.”

The chaotic cabin of the Asiana B777 following the crash

The chaotic cabin of the Asiana B777 following the crash

Twenty seconds of added thrust — time that probably would have spelled the difference between a routine landing and fearful passengers scrambling to evacuate a wrecked airliner.

Recliner Rage

Passenger arguments over reclining seat backs have resulted in at least three unplanned landings recently. Tempers were flaring, and the pilots deemed it prudent to follow the admonition of one aggravated passenger cramped behind a reclined seat back: “Put this airplane down, NOW!”

The number of reclining seat back disputes resolved by diplomatic flight attendants remains unknown but is probably a lot.

Economy class seats have been cramped for years. Anyone sitting in the middle seat knows the subtle disputes over the arm rests, which must be shared with passengers in the adjoining window and aisle seats. In the case of seat width, the passengers in the window and aisle seats have the option of scootching slightly outwards, either toward the cabin wall or into the aisle, giving the hapless middle seat passenger use of at least one arm rest.

This flexibility does not pertain to the space measured from the hinge point of the seat in front to the hinge point of the seat in back — what is known as seat pitch. When the forward seat is reclined fully, the passenger behind is wedged in; the feeling can be positively claustrophobic. It should not surprise that occupants crammed like sardines are turning on each other.

As a passenger commented:

“In most economy class seats, if the person in front of me reclines, I cannot use my fold down tray, cannot use my computer, cannot read a book or newspaper. The reclined seat takes up all the room in front of my. This is intolerable for more than an hour or so.”

On one of the three flights that landed prematurely, a passenger had locked the seat in front of him in the fully upright position, using a device known as a Knee Defender. The irate passenger whose seat was blocked from reclining threw a cup of water in the face of the passenger using the Knee Defender when he refused to remove the device.

The Knee Defender prevents the seat back in front from being reclined into the space ahead of one when the tray table is deployed

The Knee Defender prevents the seat back in front
from being reclined into the space ahead of one
when the tray table is deployed

The $22 Knee Defender consists of two plastic wedges that, when affixed at the base of the seat back in front, prevents it from reclining. According to the website where Knee Defender can be ordered:

“It helps you defend the space you need when confronted by a faceless, determined seat recliner who doesn’t care how long your legs are or about anything else that might be ‘back there’.

“For those of use who have to squeeze ourselves into the limited airplane legroom space of a coach seat offered by many airlines, a seat in front us that is poised to recline is a collision waiting to happen — with our knees serving as bumpers.

“Knee Defender™ to the rescue.”

Of course, passengers can always upgrade to Economy Plus (or variants of this moniker), in which they are afforded a greater distance between seat rows — but the seat itself remains the same.

In many cases, the Economy Plus seats are in the exit rows for emergency evacuation out the removable window panel. The extra space between seats is required by the Federal Aviation Administration (FAA) so that all passengers — not just those in that row — can speedily evacuate the airplane.

On these rows, the seat backs in front do not recline, to prevent any inhibition to quick evacuation.

The obvious solution to recliner rage is to make all rows the equivalent of exit rows — more distance between rows of seats and locked recliners. This stratagem would doubtless be unacceptable to the airlines, which would lose revenue-generating seats, and to passengers who want to recline, albeit courteously.

But this recourse does not address the overall problem of seat size. Airline seats are designed for the 95th percentile of men. However, people are getting bigger, and it is estimated that about 1 in 10 passengers today find the seats too small for them. With many economy class seats measuring a scant 17 to 18 inches across, many passengers find them too snug. The widest part of the body is in the shoulders, which is why many passengers wind up shoving for arm rest space.

The FAA should initiate a study of population size to resize, as it were, the minimum seat size and spacing, both fore-and-aft and left-to-right. FlyersRights, a passenger advocacy group, argues that there is a safety dimension not being addressed in the current mania to cram more seats into airliners and fill them completely for each flight:

“We sounded the alarm on substandard seat pitch due to airlines being allowed to insert extra rows to increase profits, resulting in passengers unable to brace themselves according to the aircraft safety card. Passengers also cannot exit a plane in 90 seconds during an emergency as required by the FAA, due to lack of egress in seat rows.

“What is needed is the FAA stepping in and setting a minimum distance between airline seats…”

Assuming such an FAA study resulted in larger seats and increased pitch, the result might not be increased comfort for the passengers. The new standard would have to be embedded in regulation. Any proposed regulation would have to be published for public comment. Airline opposition to any reduction in seats would doubtless be fiercely opposed.

The sad case of child safety seats on airlines is instructive. The FAA proposed mandating them — which would have ended the unsafe practice of infants in parents’ laps. The public response was overwhelmingly favorable. Parents, medical and safety experts all weighed in favorably. Airlines were opposed. The FAA proposal died.

Until the FAA is no longer subject to the dictates of the airline industry, expect no relief on cramped seating.

How might relief be accomplished? Have Congress enact a law requiring the FAA to study seat size and pitch from a safety and comfort standpoint, and to require its findings to be implemented by the airlines within ten years. Nothing less will relieve the present cramped and disputatious economy class seating conditions.

Questionable Accountability

The Federal Aviation Administration (FAA) proposed a $12 million fine July 28 against Southwest Airlines for sloppy repairs to fuselages on its B737 jets. What appears as significant regulatory action appears distinctly as another tardy and weak effort to assure the safety of the flying public.

“The FAA views maintenance very seriously, and it will not hesitate to take action against companies that fail to follow regulations,” vowed FAA Administrator Michael Huerta.

Tough talk and a proposed fine that are both years late, when timely FAA oversight might well have made a difference. The whole announcement of this “civil penalty” against the airline appears scripted for public consumption.

The FAA says it seeks financial disciplinary action based on Southwest’s maintenance lapses from 2006 to 2009. Note that it is now 2014, five years after the closing window of alleged shortcomings. Financial penalties and mandated procedural and personnel changes would have made eminent sense in 2010; now, years after the fact, the FAA’s belated action is too late to impact procedures, or to make a meaningful imprint on the minds of those responsible.

Not to mention that had the FAA acted in a timely manner, the sudden 60-inch tear in the upper fuselage of a Southwest jet cruising at 34,000 feet in April 2011, forcing an emergency landing of the planeload of terrified passengers, might not have occurred.


<a href=”https://nolan-law.com/wp-content/uploads/2014/08/hole.jpg”><img class=”size-medium wp-image-2869 ” alt=”Hole blown in the aluminum structure of a Southwest jet when the lap joint failed ” src=”https://nolan-law.com/wp-content/uploads/2014/08/hole-300×169.jpg” width=”300″ height=”169″ /></a> Hole blown in the aluminum structure of a Southwest jet when the lap joint failed

The FAA says that proper procedures were not taken when fuselage skins were repaired on Southwest’s jets. Specifically, that the airplanes were not placed on jacks to stabilize them for the repair work; sealant was applied between overlapping skin panels, but not all rivet holes were affixed with fasteners within the time allowed to assure a good bond and corrosion-free service.

The repairs, according to the FAA, were not performed in accordance with airworthiness directives (ADs). However, the FAA adds that it approved the repairs after the airline provided proper documentation. So, did the FAA subsequently okay the repairs even though they were made on airplanes that had not been first placed on jacks, and rivets were applied in the time allowed after sealant was applied? And it took five years for the FAA to determine that the paperwork was sloppy and to issue a proposed fine? Where were the FAA’s on-site inspectors when the repairs were first made?

Lots of questions. No answers.


<a href=”https://nolan-law.com/wp-content/uploads/2014/08/faa.jpg”><img class=”size-full wp-image-2870 ” alt=”Looks official, but the globe should be a pillow until the agency acts like a rigorous regulator ” src=”https://nolan-law.com/wp-content/uploads/2014/08/faa.jpg” width=”261″ height=”192″ /></a> Looks official, but the globe should be a pillow<br />until the agency acts like a rigorous regulator

Now begins a period of negotiation between the FAA and Southwest Airlines, in which the likely outcome is a dramatic reduction in the fine.

A fine against American Airlines for $162 million was subsequently whittled down to $25 million — an 85% reduction.

For Southwest’s lawyers, this 2013 precedent will surely provide a stimulus for vigorous argument.

Previous maintenance lapses do not seem to result in increased fines. From 2005 to 2013 the FAA levied $1,155,000 in proposed penalties against various airlines for maintenance lapses. Three forfeitures were announced against Southwest, the largest being $45,000. Eight penalties were proposed against Alaska Airlines, one of which was a measly $5,500. You would think that with eight proposed penalties from 2006-2007 there would be a special inspection of the Alaska’s maintenance practices across-the-board, especially when the airline came within a hairsbreadth of losing its FAA-issued operating certificate after the fatal crash in 2000, a direct result of maintenance deficiencies.

Each proposed penalty is viewed in isolation, not as part of a pattern warranting scrutiny as to the root causes of the maintenance violations. The flying public is unaware of these penalties; that is, unless the FAA decides to make a show of toughness.

The penalties would put a crimp in a household budget. For a corporation, they are not even as irritating as a minor hangnail.

Southwest earned a net profit in 2013 of $804 million. The proposed penalty of $12 million represents a mere 1.5% of 2013 profits. Negotiated down by 85% — as in the American Airlines case — will result in a penalty of just $1.8 million, or about two-tenths of one percent of Southwest’s 2013 profits.

These thoughts occur:

1. FAA action regarding AD noncompliance should occur within 12 months of discovery.

2. A forfeiture should be meaningful. Say, 5% of annual profits for each instance, times the number of airplanes affected.

3. The FAA should not be in the business of negotiating with the airlines what they will actually pay. The FAA is the regulator; if irregularities have been documented by the FAA’s principal maintenance inspector, the airline should be fighting to retain its operating certificate, not the amount of a reduced fine.

4. If the FAA were serious about safety and accountability, it would annually publish for the flying public each airline’s ranking using a star system similar to that used for automobile crashworthiness. For aviation, a three-star rating system would apply:

One star (¶): the airline meets FAA standards. If the airline is not meeting these admittedly minimum regulations, it should not be operating.

Two stars (¶¶): the airline more than meets FAA standards and has in place some voluntary safety programs.

Three stars (¶¶¶): all of the above, plus the airline has a pro-active safety culture with a non-punitive program to encourage employee reporting of deficiencies.

A civil penalty of less than $1 million would knock down an airline’s star rating by one star for six months. If already at the minimum one-star level, the airline would have its rating reduced to just a half-star. For penalties equal or greater than $1 million, the airline would be penalized by one star for a full year,

In pretty short order, we would see airlines scrambling to achieve a three-star rating and to make this ranking a feature of advertising, annual reports, and even on the corporate letterhead. Imagine a little logo on a proud airline’s web site and in its advertising: the great seal of the FAA emblazoned with three gold stars and a motto like, “Top ranking for safety, for five years and still improving.”

The flying public would have a ready measure; the airlines would have a meaningful incentive to avoid fines.

Malaysia Airlines Flight MH 17 – International Treaty Affords Legal Right to Passengers’ Families to Pursue Claims in Their Home Countries

Given the location and geo-political implications of the occurrence involving Malaysia Airlines Flight MH 17, speculation as to its cause will likely run rampant for years and remain vehemently contested even after a governmental probable cause is determined.

Yet regardless of the ultimate cause of the occurrence, the rights of the passenger’s beneficiaries to recover compensation for damages from Malaysia Airlines will be governed by the Montreal Convention of 1999. Even out-of-court, private settlements between the air carrier and passengers’ beneficiaries would be predicated on the provisions of the Montreal Convention.

Article 17(1) of the Convention provides:

“The carrier is liable for damage sustained in case of death or bodily injury of a passenger upon condition only that the accident which caused the death or injury took place on board the aircraft or in the course of any of the operations of embarking or disembarking.”

Beyond this threshold requirement, Article 21 of the Convention establishes a two-tiered scheme of liability for compensation. First, the air carrier is strictly liability up to an amount of 100,000 Special Drawing Rights (SDRs), which had the equivalent of US $154,166 on July 17, 2014. Thereafter, there is presumptive liability to an unlimited amount unless the air carrier proves that:

“(a) Such damage was not due to the negligence or other wrongful act or omission of the carrier or its servants or agents; or (b) Such damage was solely due to the negligence or other wrongful act or omission of a third party.”

If an air carrier and the passenger’s beneficiaries are unable to reach an agreement on the amount of compensation for damages, a court action must be brought within the two years prescribed under Article 35.

The location or jurisdiction for the bringing of such a court action is limited under Article 33 of the Convention to one of five places:

1. a court in the country where the air carrier maintains its domicile;

2. a court in the country where the air carrier maintains its principal place of business;

3. a court in the country where the air carrier has a place of business through which the contract has been made (usually considered the place the ticket was purchased);

4. a court in the country of the place of destination; or

5. a court in the country in which the passenger had his or her principal and permanent residence, so long as the air carrier or its code sharing partner does business there.

Many of these five potential jurisdictions are often the same in a given action. However, to the extent that they are different, it is the option of the plaintiff as to which of the five jurisdictions the action is to be brought.

Once an action is brought, the Montreal Convention continues to govern the substantive legal remedies of the parties, but under Article 33(4), “questions of procedure shall be governed by the law of the court seised of the case.” Such applicable procedural law may well contain limitations of the nature and amount of the recoverable damages. This must be appreciated and understood before settlement or proceeding with an action in any court.

Wrongful Death Lawsuit Filed From Plane Crash Captured In Viral Video

(Chicago, July 8, 2013) A wrongful death lawsuit was filed today in the Circuit Court of Cook County, Illinois on behalf of the family of an airline employee who perished in the fiery crash of a Boeing 747 cargo plane outside Bagram Air Field, Afghanistan on April 29, 2013.  The victim, Gary P. Stockdale, was a mechanic for National Airlines who was aboard the flight when it crashed shortly after takeoff.  The suit was filed by Chicago-based Nolan Law Group which is also representing the families of Jamie Lee Brokaw and Rinku Summan, pilots for National Airlines who were among the seven men killed in the crash.

Video of the crash captured on a vehicle dash cam went viral after being posted on the internet through the Live Leaks website.

At the time of the crash, the plane was transporting cargo that included five Mine-Resistant Ambush Protected (MRAP) vehicles weighing nearly 80 tons which were on pallets in the main cargo area of the plane.  Government investigators have reported that it is likely a shift in the cargo from one of the vehicles breaking loose from its restraints that resulted in the crash.

The suit alleges that the accident aircraft was unreasonably dangerous and unfit for the transport of high density, rolling cargo and that Boeing’s manuals lacked sufficient limitations and warnings related to the transportation of such cargo.  The suit further alleges that the airplane’s cargo restraint system was faulty, that it was improperly assembled by Boeing during its conversion from a passenger to a cargo aircraft, and that the instructions on the use of the cargo restraint system were inadequate.

Well-known as an aviation law firm, Nolan Law Group has extensive experience in major air cargo crash litigation having represented crew members and families of crew members in accidents involving Fine Air at Miami Airport in August 1997, Emery Worldwide near Sacramento in February 2000, and most recently the Kalitta Air Boeing 747 crash near Bogotá, Colombia in July 2008.  The firm has also been active in other crash claims from Afghanistan including a previous National Airlines crash near Kabul in October 2010, and the successful resolution of claims arising from a fatal helicopter accident at Kandahar Air Field in July 2009.



Tom Ellis


Office: (312) 630-4000 x.112

Cell: (312) 493-3349

Asiana Accident Highlights Passenger Rights And Limitations To Recovery

Although Asiana Airlines Flight 214 crashed while landing at the San Francisco International Airport, contrary to simple logic, lex loci delicti may not be applicable and the United States may not be a forum for all passengers to bring a case against the airline. In cases wherein a claim may not be brought against the carrier in the United States under the provisions of the Montreal Convention, a passenger may wish to consider other avenues of recovery. Historically, these have included claims against aircraft and aircraft component manufacturers, airport operators and pilot training facilities. In each of the foregoing, it should be proven that adequate ties exist which points to the United States courts as the most convenient forum where the case may be filed and heard.

Under the Montreal Convention for the Unification of Certain Rules for International Carriage by Air (the “Montreal Convention”), a treaty superseding the Warsaw Convention, which the United States ratified on July 31, 2003, any one of the following basis for jurisdiction should be present before jurisdiction may be acquired by the US court, namely: (1) domicile of the carrier; (2) the “principal place of the business” of the carrier; (3) the place where the carrier has a “place of business through which the contract has been made; (4) “the place of destination”; or (5) the “principal and permanent residence” of the passenger.” Art. 33, Montreal Convention, as quoted in Baah v. Virgin Atlantic Airways Ltd., 473 F.Supp.2d 591 (2007).

Thus, as held by the Adjoyi, et. al. v. Federal Air (Pty) Ltd., 137 F. Supp.2d 498 (2001), federal district courts have no jurisdiction over Warsaw Convention (now Montreal Convention) claim unless air carrier’s domicile or principal of business is in the United States, the carrier has place of business through which contract for passage was made in the United States, or that the United States is the place of destination of flights. Applying the foregoing to the recent crash, it is clear that only the third, fourth or fifth basis (added by the Montreal Convention) would allow a claim to be filed in the United States, to wit, where the ticket was purchased in the United States, or that the United States was indicated as the ticket’s final destination or where the passenger is a resident of the United States, regardless of where the ticket was purchased or its destination is. Otherwise, a case filed with the US courts may be dismissed for want of jurisdiction.

In addition to the foregoing, Article 17 of the Montreal Convention provides that a carrier is liable only when death or injury took place on board the aircraft or in the course of the operations of embarking or disembarking. It likewise provides that for death or bodily injury claims, the carrier cannot exclude or limit its liability if damages do not exceed 100,000 special drawing rights. Article 21 of the Montreal Convention. Furthermore, a carrier may not be liable for any claims in excess of the said amount, should the carrier prove that damage was not due to the negligence or wrongful act or omission of the carrier or its agents and employees, or that the damage was due to negligence or wrongful act or omission of a third party. Id.


Wife of Afghanistan Plane Crash Victim Retains Aviation Attorneys

A Boeing 747 cargo plane, operated by National Air Cargo, crashed on takeoff from Bagram Air Base in Afghanistan on April 29th of 2013, killing all seven of its crew members. Among these crew members was Jamie Lee Brokaw (33) of Monroe, Michigan, a third generation pilot whose family’s aviation history stretches back to WWII. Brokaw was a member of the U.S. Air Force during Operation Enduring Freedom and Operation Iraqi Freedom before becoming a commercial airline pilot in 2008 and a First Officer in 2010. Brokaw is survived by his wife Elizabeth, who has retained Nolan Law Group to represent it for claims arising from the fatal injuries he sustained in the crash.

The accident gained unusual international attention when footage of the crash was posted on the internet and speculation ensued as to its cause, as the aircraft attained a very steep nose-up attitude immediately after takeoff. The aircraft then rolled left and right and entered a stall, where it descended into the ground near the end of the runway. Mrs. Brokaw, confident of her husband’s knowledge and attention to safety are searching for further answers and placing liability, something government investigators are precluded from doing. The accident aircraft was originally manufactured as a passenger aircraft and converted to a freighter in December of 2007 by Boeing for Air France. This raises some serious concerns about the structural strength of the aircraft and floor, as well as issues about the cargo restraint systems. The plane’s cargo included extremely heavy vehicles, and although the total cargo weight was within proper limits, the individual restraint capabilities of such heavy vehicles have their own limits.

Well-known as an aviation law firm, Nolan Law Group has extensive experience in major air cargo crash litigation, having represented crew members in accidents both nationally and internationally. A few examples include Fine Air at Miami Airport in August 1997, Emery Worldwide near Sacramento, California in February 2000, and most recently the Kalitta Air Boeing 747 accident near Bogotá, Colombia in July 2008. The firm has also been active in other crash claims from Afghanistan including a previous National Airlines crash near Kabul in October 2010, and the successful resolution of claims arising from a fatal helicopter accident at Kandahar Air Field in July 2009. Brokaw is also survived by his step-daughter Chloe and parents Susan and Terry.


Nolan Law Group Files Lawsuit Stemming From National Airlines Crash in Afghanistan

Nolan Law Group has filed a wrongful death lawsuit on behalf of the families of six crewmembers who died aboard National Airlines Flight 662 when it crashed into a mountain outside Kabul, Afghanistan on October 12, 2010.

The Lockheed Model L-100-20 (L-382E) airplane was operated under contracts with National Air Cargo, Inc. and Transafrik International Limited, among others, as National Airlines Flight 662, enroute from Bagram Air Base to Kabul International Airport.

In its Complaint, the Nolan Law Group alleged that National Air Cargo, Inc. and others were negligent and careless in procuring and providing an aircraft for use in commerce that was not airworthy or in a safe condition. It was likewise alleged that the said aircraft’s terrain avoidance warning system was inoperative, the autopilot was unserviceable and the traffic collision avoidance system was inoperative in flight, among others. Furthermore, the lawsuit included a claim against the entity providing the air traffic control services in the airspace near and around Kabul International Airport, for negligence and failure to provide the aircraft command with adequate warning and necessary instructions to keep a safe and proper separation between the aircraft and the surrounding terrain. This case is currently pending with the District Court of New York.

Earlier, Nolan Law Group has filed wrongful death claims on behalf families of victims who were killed in a Russian Mi-8 Hip helicopter under contract to NATO, which crashed in Kandahar Air Field in the Southern Afghanistan on July 19, 2009, killing 16 passengers and wounding five. The lawsuit was filed against the victims’ subcontracting employer who failed to exercise reasonable care and was negligent in ensuring that the chartering company whose services it procured was aware of the safety standards applicable to performance under the subcontract. This case was later settled by the parties.

News Archives